Competitive Price Targeting Strategic Interactions in Mobile Marketing

Jean-Pierre Dubé¹ Zheng Fang² Nathan Fong³ Xueming Luo³

¹University of Chicago, Booth School of Business and NBER ²Sichuan University, Business School ³Temple University, Fox School of Business

November 2015

Mobile marketing and price targeting

- Targeting competitive locations to drive coupon redemption
 - Dunkin': 3.6%
 - Department store: 2%

Mobile marketing and price targeting

- Targeting competitive locations to drive coupon redemption
 - Dunkin': 3.6%
 - Department store: 2%
- A source of incremental sales

Mobile marketing and price targeting

- Targeting competitive locations to drive coupon redemption
 - Dunkin': 3.6%
 - Department store: 2%
- A source of incremental sales
- Not accounting for competitive response

Competitive price targeting

- Monopoly: targeting weakly dominates uniform pricing
 - Firms may optimize based on unilateral evaluations

Competitive price targeting

- Monopoly: targeting weakly dominates uniform pricing
 - Firms may optimize based on unilateral evaluations
- Oligopoly: targeting can result in lower prices and profits in every segment
 - Asymmetric best response a necessary condition for ambiguity (Corts, 1998)
 - Cannot necessarily commit to no targeting (Thisse and Vives, 1988; Shaffer and Zhang, 1995)

• Estimate the effect of price targeting on profits in a competitive market

- Estimate the effect of price targeting on profits in a competitive market
- Evaluate the adequacy of unilateral optimization

- Estimate the effect of price targeting on profits in a competitive market
- Evaluate the adequacy of unilateral optimization
- Challenge: firms (and researchers) lack information on own price response under varying competitive prices

2 Field Experiment

Experimental design

• Randomly assigned prices

- 3 levels for offense (holdout, medium, high)
- 3 levels for defense (holdout, low, medium)

Experimental design

• Randomly assigned prices

- 3 levels for offense (holdout, medium, high)
- 3 levels for defense (holdout, low, medium)

Observed segments

- 2 locations (symmetric design)
- 2 behavioral types (high and low based on recency)

Experimental design

• Randomly assigned prices

- 3 levels for offense (holdout, medium, high)
- 3 levels for defense (holdout, low, medium)

Observed segments

- 2 locations (symmetric design)
- 2 behavioral types (high and low based on recency)
- N = 500 per cell, 18,000 total, mid-day on a Saturday

Purchase Rate

Purchase Rate

Asymmetric cross-promotional effects

8/23

Asymmetric cross-promotional effects

Asymmetric cross-promotional effects Defense is effective, but all firms still discount

Observations

- Similar pattern across 4 segments
- In "equlibrium" everyone chooses maximum discount

Observations

- Similar pattern across 4 segments
- In "equlibrium" everyone chooses maximum discount
- Discrete pricing treatments limit observed strategy sets
 - Limited range and resolution

Agenda

Estimating the impact on profits

- Estimate a demand model
 - Probit, MCMC

Estimating the impact on profits

- Estimate a demand model
 - Probit, MCMC
- Derive best response functions
 - Posterior represents firms' beliefs

Estimating the impact on profits

- Estimate a demand model
 - Probit, MCMC
- Derive best response functions
 - Posterior represents firms' beliefs
- Identify fixed points
 - Compare profits across targeting scenarios

Demand model

- Consumers choose $y \in \{A, B, C\}$, where j = A, B denote the theaters and j = C is the outside option
- k = 1, ..., K observable segments, with population weights λ^k
- p_j is the ticket price at theater j

Utility

• Consumer h's utility if a member of segment k:

$$u_{hA} = \theta_A^k - \alpha^k p_A + \tilde{\epsilon}_{hA}$$
$$u_{hB} = \theta_B^k - \alpha^k p_B + \tilde{\epsilon}_{hB}$$
$$u_{hC} = \tilde{\epsilon}_{hC}$$

Utility

• Consumer h's utility if a member of segment k:

$$u_{hA} = \theta_A^k - \alpha^k p_A + \tilde{\epsilon}_{hA}$$
$$u_{hB} = \theta_B^k - \alpha^k p_B + \tilde{\epsilon}_{hB}$$
$$u_{hC} = \tilde{\epsilon}_{hC}$$

• Correlated errors allow for flexible substitution patterns:

$$\eta_{h} \equiv \begin{bmatrix} \tilde{\epsilon}_{hA} - \tilde{\epsilon}_{hC} \\ \tilde{\epsilon}_{hB} - \tilde{\epsilon}_{hC} \end{bmatrix} \sim N(0, \Psi)$$

Estimation

• We can express utilities as:

$$U_h \equiv \left[\begin{array}{c} u_{hA} \\ u_{hB} \end{array}\right] = B^k X + \eta_h$$

• And choice probabilities as:

$$Pr(y_h = j | B^k, X, \Psi^k) = Pr(u_{hj} - u_{hi} > 0, \forall i \neq j)$$

Estimation

• We can express utilities as:

$$U_h \equiv \left[\begin{array}{c} u_{hA} \\ u_{hB} \end{array} \right] = B^k X + \eta_h$$

• And choice probabilities as:

$$Pr(y_h = j | B^k, X, \Psi^k) = Pr(u_{hj} - u_{hi} > 0, \forall i \neq j)$$

- Transformation of the utilities leads to a trinomial probit
- Estimate using MCMC separately for each segment
- Retain R posterior draws for subsequent computations, $\{B^{r,k}, \Psi^{r,k}\}$

Scenarios for comparison

• Competitive equilibrium with uniform pricing

Scenarios for comparison

- Competitive equilibrium with uniform pricing
- Competitive equilibrium with targeted pricing

Scenarios for comparison

- Competitive equilibrium with uniform pricing
- Competitive equilibrium with targeted pricing
- Unilateral targeting
 - A deviation from uniform pricing, without competitive response

Uniform pricing

• Firm *j*'s pricing problem

$$p_{j}^{uniform} = argmax_{p} \left\{ p \sum_{k=1}^{K} \lambda^{k} \mathbb{E} \left[Pr\left(j|B^{k}, p, \Psi^{k}\right) | \mathbf{D}^{k} \right] \right\}$$
$$\approx argmax_{p} \left\{ p \left[\sum_{k=1}^{K} \lambda^{k} \frac{1}{R} \sum_{r=1}^{R} Pr\left(j|B^{r,k}, p, \Psi^{r,k}\right) \right] \right\}$$

Uniform pricing

• Firm *j*'s pricing problem

$$p_{j}^{uniform} = argmax_{p} \left\{ p \sum_{k=1}^{K} \lambda^{k} \mathbb{E} \left[Pr\left(j|B^{k}, p, \Psi^{k}\right) | \mathbf{D}^{k} \right] \right\}$$
$$\approx argmax_{p} \left\{ p \left[\sum_{k=1}^{K} \lambda^{k} \frac{1}{R} \sum_{r=1}^{R} Pr\left(j|B^{r,k}, p, \Psi^{r,k}\right) \right] \right\}$$

• FONC

$$\sum_{k=1}^{K} \lambda^{k} \sum_{r=1}^{R} \Pr\left(j|B^{r,k}, p, \Psi^{r,k}\right) + p_{j}^{\textit{uniform}} \sum_{k=1}^{K} \sum_{r=1}^{R} \lambda^{k} \frac{\partial \Pr\left(j|B^{r,k}, p, \Psi^{r,k}\right)}{\partial p_{j}} = 0$$

Targeted pricing

• Firm j's pricing problem for a partition Ω of the K = 4 segments

$$p_{j}^{\Omega} = \operatorname{argmax}_{p} \left\{ \sum_{\omega \in \Omega} p_{\omega} \sum_{k \in \omega} \lambda^{k} \mathbb{E} \left[\Pr \left(j | B^{k}, p, \Psi^{r, k} \right) | \mathbf{D}^{k} \right] \right\} \\ \approx \operatorname{argmax}_{p} \left\{ \sum_{\omega \in \Omega} p_{\omega} \sum_{k \in \omega} \lambda^{k} \frac{1}{R} \sum_{r=1}^{R} \Pr \left(j | B^{r, k}, p, \Psi^{r, k} \right) \right\}$$

Targeted pricing

• Firm j's pricing problem for a partition Ω of the K = 4 segments

$$p_{j}^{\Omega} = \operatorname{argmax}_{p} \left\{ \sum_{\omega \in \Omega} p_{\omega} \sum_{k \in \omega} \lambda^{k} \mathbb{E} \left[\Pr \left(j | B^{k}, p, \Psi^{r, k} \right) | \mathbf{D}^{k} \right] \right\} \\ \approx \operatorname{argmax}_{p} \left\{ \sum_{\omega \in \Omega} p_{\omega} \sum_{k \in \omega} \lambda^{k} \frac{1}{R} \sum_{r=1}^{R} \Pr \left(j | B^{r, k}, p, \Psi^{r, k} \right) \right\}$$

• FONC ($\forall \omega \in \Omega$)

$$\sum_{k \in \omega} \left(\lambda^{k} \sum_{r=1}^{R} \Pr\left(j | B^{r,k}, p, \Psi^{r,k}\right) + p_{j\omega}^{\Omega} \sum_{r=1}^{R} \lambda^{k} \frac{\partial \Pr\left(j | B^{r,k}, p, \Psi^{r,k}\right)}{\partial \rho_{j}} \right) = 0$$

Agenda

Parameter estimates

Coefficient	High, A	Low, A	High, B	Low, B
θ_A	-0.344	0.25	-1.066	-1.413
	(-0.651,-0.028)	(-0.178,0.695)	(-1.344,-0.79)	(-1.737,-0.964)
θ_B	-1.043	-0.628	-0.376	0
	(-2.002,-0.425)	(-1.499,-0.023)	(-0.741,-0.035)	(-0.311,0.349)
α	-0.027	-0.044	-0.027	-0.028
	(-0.033,-0.021)	(-0.053,-0.035)	(-0.036,-0.019)	(-0.043,-0.017)
$\rho_{A,B}$	0.796	-0.951	0.962	0.348
	(0.443,0.931)	(-0.99,-0.826)	(0.926,0.985)	(-0.953,0.955)

Elasticity estimates

	Hig	h, A	Lov	и, А	High	ı, B	Lov	, В
		Both set regular prices of 75 RMB						
	<i>p</i> _A	pв	p _A	pв	р _А	pв	pA	pв
Firm A	-5.33	0.15	-10.17	0.00	-16.99	13.17	-7.88	3.72
Firm B	3.44	-8.35	0.00	-11.82	0.02	-4.84	0.42	-8.96
	Both set prices of 30 RMB (60% off)							
	р _А	pв	<i>p</i> _A	pв	р _А	pв	<i>p</i> _A	pв
Firm A	-1.40	0.10	-2.07	0.00	-7.97	5.95	-3.10	0.77
Firm B	1.52	-3.44	0.00	-4.33	0.01	-1.25	0.03	-1.91

Best-response functions (targeting on one dimension)

Equilibrium profits vs. unilateral targeting profits

	Equilibrium	
	Firm A	Firm B
Uniform	196	291
Location	196	298
Туре	198	295
Type and Location	197	297

Equilibrium profits vs. unilateral targeting profits

	Equilibrium		Unilateral	
	Firm A	Firm B	Firm A	Firm B
Uniform	196	291		
Location	196	298	198	302
Туре	198	295	197	294
Type and Location	197	297	200	304

Conclusions

- Competition moderates the effectiveness of price targeting
- Firms could easily mis-estimate the profitability of targeting
 - Overestimate geographical targeting (asymmetric best response)
 - Underestimate behavioral targeting (symmetric best response)
- Future research: consumer response
 - Consumer dynamics (Shin and Sudhir, 2010)
 - Strategic consumers (Chen, Li, and Sun, 2015)

Uniform pricing equilibrium

		Firm A	Firm B
	Price	19.2942	18.8641
Share:	High type, location A	0.1896	0.0168
	Low type, location A	0.2795	0.0465
	High type, location B	0.0005	0.2039
	Low type, location B	0.0106	0.2380
Expected profit per 100 customers messaged		196.04	291.33

Equilibrium prices

	Market	Firm A Price	Firm B Price
Uniform	Pooled	19.294	18.864
by geography	Loc A	19.575	10.564
	Loc B	10.485	20.064
by type	High	22.948	23.786
	Low	18.597	17.775
by geography and type	A High	21.335	10.870
	A Low	19.146	10.546
	B High	5.230	20.595
	B Low	11.874	19.322

Importance of considering competitive response

	Firm A Profit	Firm B Profit
Uniform pricing	196	291
Equilibrium targeting	197	297
Unilateral targeting	200	304

Targeting choice as a strategic game

	Firm B		
Firm A	Uniform pricing	Unilateral targeting	
Uniform pricing	196, 291	194, 304	
Unilateral targeting	198, 291	197, 297	

Experimental purchase response by segment

FOX GLOBAL CENTER FOR BIG DATA IN MOBILE ANALYTICS

Experimental revenues by segment

Posterior profit differences: unilateral/equilibrium vs. uniform pricing

Posterior profit differences: unilateral/equilibrium vs. uniform pricing

